Pandas Data Structure

 DATA STRUCTURES IN PANDAS:

    One of the most important things in Pandas is Data Structure.

    Pandas have three data structures:
    • Series
    • DataFrame
    • Panel

SERIES:

  • Series is a one-dimensional array.
  • It holds any type of data. 

WAYS TO CREATE A SERIES:

  • Series using list
  • Series using array
  • Series using dictionary

SERIES USING LIST:

    Creating a series with the list values.

    Example: 

  
import pandas as pd 

list_data = ['pandas', 'numpy', 'pytest', 'pywin32']

result = pd.Series(list_data)

print(result)
      



SERIES USING ARRAY:

    Creating a series with the array values.

    Example: 

  
import pandas as pd 
import numpy as np

array_data =  np.array(['pandas', 'numpy', 'pytest', 'pywin32'])

result = pd.Series(array_data)

print(result)
      


SERIES USING DICTIONARY:

    Creating a series with the dictionary data.

    Example: 

  
import pandas as pd 

dict_data = { 'Name': 'Vetri', 'age': 20}

result = pd.Series(dict_data)

print(result)
      


CREATE LABELS:

    Change the index values with the labels specified.

    Example: 

  
import pandas as pd 

list_data = ['pandas', 'numpy', 'pytest', 'pywin32']

result = pd.Series(list_data, index=['a', 'b', 'c', 'd'])

print(result)
      




     Able to access the particular values based on the label.


print(result["a"])
      



    If the length of the index doesn't match the length of the value, then it throws the error.





Thanks for choosing our blog 😊. 



Comments

Popular posts from this blog

MySQL Tutorial Part 1

Pandas DataFrame empty

Introduction to Java